Basic Error Analysis

Physics 401 Fall 2016

Eugene V Colla

I

Agenda

- Errors and uncertainties
- The Reading Error
- Accuracy and precession
- Systematic and statistical errors
- Fitting errors
- Appendix. Working with oil drop data - Nonlinear fitting

What and when we need to know about errors, Everyday life.

1

What and when we need to know about errors. Industry.

What and when we need to know about errors. Science.

Fig. 70.

Measurement of the speed of the light

1675 Ole Roemer: 220,000 Km/sec

> Does it make sense? What is missing?

NIST Bolder Colorado $\mathrm{c}=299,792,456.2 \pm 1.1 \mathrm{~m} / \mathrm{s}$.

Reading error

How far we have to go in reducing the reading error?

We do not care about accuracy better than 1 mm

If ruler is not okay, we need to use digital caliper

Probably the natural limit of accuracy can be due to length uncertainty because of temperature expansion. For $53 \mathrm{~mm} \Delta L \cong 0.012 \mathrm{~mm} / \mathrm{K}$ Reading Error $= \pm \frac{1}{2}$ (least count or minimum gradation).

Reading error. Digital meters.

Fluke 8845A multimeter

Example Vdc (reading) $=0.85 \mathrm{~V}$

$$
\begin{aligned}
& \Delta V=0.83 \times\left(1.8 \times 10^{-5}\right) \\
& +1.0 \times\left(0.7 \times 10^{-5}\right) \cong 2.2 \times 10^{-5} \\
& =22 \mu V
\end{aligned}
$$

8846A Accuracy

Accuracy is given as \pm (\% measurement $+\%$ of range)

Range	$\begin{gathered} 24 \text { Hour } \\ \left(23 \pm 1^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 90 \text { Days } \\ \left(23 \pm 5^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ \left(23 \pm 5^{\circ} \mathrm{C}\right) \end{gathered}$	Temperature Coefficient/ ${ }^{\circ} \mathrm{C}$ Outside 18 to $28^{\circ} \mathrm{C}$
100 mV	$0.0025+0.003$	$0.0025+0.0035$	$0.0037+0.0035$	$0.0005+0.0005$
1 V	$0.0018+0.0006$	$0.0018+0.0007$	$0.0025+0.0007$	$0.0005+0.0001$
10 V	$0.0013+0.0004$	$0.0018+0.0005$	$0.0024+0.0005$	$0.0005+0.0001$
100 V	$0.0018+0.0006$	$0.0027+0.0006$	$0.0038+0.0006$	$0.0005+0.0001$
1000 V	$0.0018+0.0006$	$0.0031+0.001$	$0.0041+0.001$	$0.0005+0.0001$

IT

Accuracy and precession

The accuracy of an experiment is a measure of how close the result of the experiment comes to the true value

Precision refers to how closely individual measurements agree with each other

Accuracy and precession

Not Precise, Not Accurte

Accurate, Precise

Precise, Not Accurate

Errors

Systematic and random errors

- Systematic Error: reproducible inaccuracy introduced by faulty equipment, calibration or technique.
- Random errors: Indefiniteness of results due to finite precision of experiment. Measure of fluctuation in result after repeatable experimentation.

Philip R. Bevington "Data Reduction and Error Analysis for the Physical sciences", McGraw-Hill, 1969

Systematic errors

Sources of systematic errors: poor calibration of the equipment, changes of environmental conditions, imperfect method of observation, drift and some offset in readings etc.

Systematic errors

Example \#3: poor calibration

凹 Temperature sensor

Random errors

Correct value

Systematic error

Random error

Random errors, Poisson distribution

Siméon Denis Poisson (1781-1840)

illinois.edu

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t} \quad n=0,1,2, \ldots
$$

r : decay rate [counts/s] t : time interval [s]
$\rightarrow P_{n}(r t)$: Probability to have n decays in time interval t

A statistical process is described through a Poisson Distribution if:

- random process \rightarrow for a given nucleus probability for a decay to occur is the same in each time interval.
- universal probability \rightarrow the probability to decay in a given time interval is same for all nuclei.
- no correlation between two instances (the decay of on nucleus does not change the probability for a second nucleus to decay.

Poisson distribution

$$
P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t} \quad n=0,1,2, \ldots \begin{aligned}
& r: \text { decay rate [counts/s] } t \text { : time interval [s] } \\
& \rightarrow P_{n}(r t): \text { Probability to have } \mathrm{n} \text { decays in } \\
& \text { time interval t }
\end{aligned}
$$

Properties of the Poisson distribution:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}(r t)=1, \text { probabilities sum to } 1 \\
& <n>=\sum_{n=0}^{\infty} n \cdot P_{n}(r t)=r t, \text { the mean } \\
& \sigma=\sqrt{\sum_{n=0}^{\infty}(n-<n>)^{2} P_{n}(r t)}=\sqrt{r t}
\end{aligned}
$$

standard deviation

Poisson distribution at large rt

 $P_{n}(t)=\frac{(r t)^{n}}{n!} e^{-r t} \quad n=0,1,2, \ldots$
Poisson and Gaussian distributions

Carl Friedrich Gauss (1777-1855)

$$
P_{n}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}}
$$

Gaussian distribution: continuous

Normal (Gaussian) distribution

$$
P_{n}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}}
$$

Error in the mean is given as $\frac{\sigma}{\sqrt{N}}$

1

Measurement in presence of noise

4.89855
5.25111

1
Actual measured values

Measurement in presence of noise

1

Measurement in presence of noise

Result $\Longrightarrow U=x_{c} \pm \frac{\sigma}{\sqrt{N}} \quad \begin{aligned} & \sigma \text { - standard deviation } \\ & \mathrm{N} \text { - number of samples }\end{aligned}$
1 For $\mathrm{N}=10^{6} \mathrm{U}=4.999 \pm 0.001 \quad 0.02 \%$ accuracy

Fitting errors

$\mathrm{Ag} \beta$ decay

$$
\boxed{\square} \quad y=A 1 \cdot \exp \left(\frac{-t}{t_{1}}\right)+A 2 \cdot \exp \left(\frac{-t}{t_{2}}\right)+y_{0}
$$

Fitting. Analysis of the residuals

$\mathrm{Ag} \beta$ decay

Test 1. Fourier analysis

No pronounced frequencies found

1

Fitting. Analysis of the residuals

Correlation function $\quad y(m)=\sum_{n=0} f(n) g(n-m)$
autocorrelation function $\quad y(m)=\sum_{n=0}^{M-1} f(n) f(n-m)$
T

Fitting. Analysis of the residuals. Non "ideal ${ }^{w}$ case

	Clear experiment	Data + "noise"
$\mathbf{t}_{\mathbf{1}}(\mathbf{s})$	177.76	145.89
$\mathbf{t}_{\mathbf{2}}(\mathbf{s})$	$\mathbf{3 0 . 3 2}$	27.94

I

Fitting. Analysis of the residuals. Non "ideal ${ }^{w}$ case

Histogram does not follow the normal distribution and there is frequency of 0.333 is present in spectrum

Fitting. Analysis of the residuals. Non "ideal ${ }^{\underline{\omega}}$ case

Conclusion: fitting function should be modified by adding an additional term:

$$
y(t)=y_{0}+A_{1} \exp \left(\frac{-t}{t_{1}}\right)+A_{2} \exp \left(\frac{-t}{t_{2}}\right)+A_{3} \sin (\omega t+\theta)
$$

Fitting. Analysis of the residuals. Non "ideal ${ }^{w}$ case

	Clear experiment	Data + noise	Modified fitting
$\mathbf{t}_{\mathbf{1}}(\mathbf{s})$	177.76	145.89	172.79
$\mathbf{t}_{\mathbf{2}}(\mathbf{s})$	30.32	27.94	30.17

Error Analysis, Millikan oil drop experiment.
In general we could expect both components of errors

$Q_{\text {meas }}=Q_{\text {true }}+\mathbf{e}_{\mathbf{s}}+\mathbf{e}_{\mathbf{r}}$

$\mathbf{e}_{\mathbf{s}}$ - systematic error comes from uncertainties of plates separation distance, applied DC voltage, ambient temperature etc.

$$
V=V_{\mathrm{DC}} \pm \Delta V, d=d_{0} \pm \Delta d \ldots
$$

e_{r} - random errors are related to uncertainty of the knowledge of the actual $\mathbf{t}_{\mathbf{g}}$ and $\mathrm{t}_{\text {rise }}$.

Systematic component. Error propagation. Millikan oil drop experiment.

$$
Q=F \bullet S \bullet T=\left(\frac{1}{f_{c}^{3 / 2}}\right) \frac{9 \pi d}{V} \sqrt{\frac{2 \eta^{3} x^{3}}{g \rho}} \frac{1}{\sqrt{t_{g}}}\left(\frac{1}{t_{g}}+\frac{1}{t_{\text {rise }}}\right)
$$

$$
\Delta Q=\sqrt{(S \bullet T)^{2} \Delta F^{2}+(F \bullet T)^{2} \Delta S^{2}+(F \bullet S)^{2} \Delta T^{2}}
$$

$$
T=\frac{1}{\sqrt{t_{g}}}\left(\frac{1}{t_{g}}+\frac{1}{t_{\text {rise }}}\right) \Delta T=\sqrt{\left(\frac{3 / 2}{t_{g}^{5 / 2}}+\frac{1 / 2}{t_{g}^{3 / 2}} \frac{1}{t_{\text {ris }}}\right)^{2} \Delta t_{g}^{2}+\left(\frac{1}{t_{g}^{1 / 2}} \frac{1}{r_{\text {rise }}{ }^{2}}\right)^{2} \Delta t_{\text {rise }}{ }^{2}}
$$

T

Appendix \#1. Analyzing of the statistical data.

Step 1. Collect your data + parameters of the experiment in:
|lengr-file-03\PHYINST\APL Courses\PHYCS401\Students\1. Millikan Oil Drop experiment\Section L1m.opj

Use different columns for each student or team. This Origin project is for data collecting only but not for data analysis. For data analysis you have to copy these data and experiment parameters obtained by different students/team and paste it in one in your personal Origin project.

	A(L)	$\mathrm{B}(\mathrm{Y})$	C (Y)	D(Y)
Long Name	parameter label	Par	tg	tr
Units				
Comments	student1, student2	student1, student2	student1, student2	student1, student2
1	p	765	15.56521	16.7815
2	x	0.00145	23.07825	31.8955
3	d	0.00317	20.14243	11.70129
4	V	500	26.97377	22.47531
5	Ta	20	16.34362	16.44208
6			25.93429	25.02886
7			15.34338	9.27446
8			29.3815	19.6161
9			26.0786	24.3434
\bigcirc				

Setup and environmental parameters

Appendix \#1. Analyzing of the statistical data.

Step 1. Slightly Modified Origin Prpjeckt For Data Collection:

Ilengr-file-03\PHYINST\APL Courses\PHYCS401|Students\1. Millikan Oil Drop experiment|Section L1m.opi

$\mathrm{A}(\mathrm{L})$	$\mathrm{B}(\mathrm{Y})$	$\mathrm{C}(\mathrm{Y})$	$\mathrm{D}(\mathrm{Y})$	$\mathrm{Y}(\mathrm{Y})$
parameter label	Par	$\mathbf{t g}$	$\mathbf{t r}$	$\mathbf{n = Q / \mathbf { l . 6 0 2 e } - 1 9}$
student1, student2	student1, student2	student1, student 2	student1, student2	student1 student2
η				
$\Delta \eta / \Delta \mathrm{T}$ $\rho 1$				
$\rho 2$				
$\rho 1-\rho 2$				
g				
p				
x				
d				
V				
Ta				

Extra column for number of elementary charges

Appendix \#1. Analyzing of the statistical data.

Step 2. Working on personal Origin project

Make a copy of the Millikan1 project to your personal folder and open it

Appendix \#1. Analyzing of the statistical data.

Millikan oil drop experiment

Step 3. Histogram graph

First use the data from the column with drop charges and plot the histogram

Appendix. Analyzing of the statistical data.

Millikan oil drop experiment
Step 4. Histogram. Bin size

Origin will automatically but not optimally adjust the bin size h. In tis page figure $h=0.5$. There are several theoretical approaches how to find the optimal bin size.

$$
h=\frac{3.5 \sigma}{n^{1 / 3}}
$$

σ Is the sample standard deviation and n is total number of observation. For presented in Fig. 1 results good value of $\boldsymbol{h} \mathbf{~ 0 . 1}$

1

Appendix \#1. Analyzing of the statistical data.

Step 4. Histogram. Bin size
To change the bin size click on graph and unplug the "Automatic Binning" option

Bin size in this histogram is $\mathbf{0 . 1}$

Appendix \#1. Analyzing of the statistical data.

Step 4. Multipeak Gaussian fitting

Millikan oil drop experiment

To do this you have to add an extra plot to the graph Counts vs. Bin Center

Appendix \#1: oil Drop Data Issue.

Be careful with data selection obtained by different teams!

T

Appendix \#1: oil Drop Data Issue.

Write-up, page 7. mistype in some copies

quantity	Value
Viscosity of air	$\eta=1.847810^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\left(25^{\circ} \mathrm{C}\right)$
	oil Density of oil
Density of air	$\rho_{\text {air }}=1.296 \mathrm{~kg} / \mathrm{m}^{3} / \mathrm{m}^{3}$
Acceleration due to gravity	$\mathrm{g}=9.801 \mathrm{~m} / \mathrm{s}^{3}$

Wrong!

Correct number

quantity	Value
Viscosity of air	$\left.\eta=1.847810^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\left(25^{\circ} \mathrm{C}\right)\right)$ $\frac{d \eta}{d T}=4.8 \quad 10^{-8} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s} /{ }^{\circ} \mathrm{C}$
Density of oil	$\rho_{\text {oil }}=886 \mathrm{~kg} / \mathrm{m}^{3}$
Density of air	$\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$
Acceleration due to gravity	$\mathrm{g}=9.801 \mathrm{~m} / \mathrm{s}^{3}$

$$
\Delta \eta / \Delta T=4.8 \times 10^{-8} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} /{ }^{\circ} \mathrm{C}
$$

$$
\eta(T)=\eta\left(25 C^{o}\right)+4.8 \times 10^{-8} \times(T-25)\left(\mathrm{kg} / \mathrm{m} * \mathrm{~s} /{ }^{o} C\right)
$$

Appendix \#1. Analyzing of the statistical data.

Step 4. Multipeak Gaussian fitting

Millikan oil drop experiment

This plot can be used for peak fitting.

Appendix \#1. Analyzing of the statistical data.

Step 4. Multipeak Gaussian fitting

Millikan oil drop experiment

This plot can be used for peak fitting.

Final result for first two peaks:
$Q / e=0.93 \pm 0.01$
$Q / e=1.87 \pm 0.07$

This pretty close to e and $2 e$

Appendix \#1. Fitting. Main Idea.

$\left(x_{i}, y_{i}\right)$ is an experimental data array, x_{i} is an independent variable and y_{i}-dependent $f(x, \beta)$ is a model function and β is the vector of fitting (adjustable) parameters The goal of the fitting procedure is to find the set of parameters which will generate the function f closest to the experimental points.

To reach this goal we will try to minimize the sum of squared deviation function (S):

$$
S(\beta)=\sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \beta\right)\right]^{2}
$$

Appendix \#1. Fitting. The Choice of Parameters.

The goal of fitting is not only to find the curve best matching the experimental data but also to find the corresponding parameters which in majority cases are the important physical parameters

There are several known mathematical algorithms for optimizing these parameters but in general the fitting procedure could have not only unique solution and the choice of initial parameters is very important issue

$$
S(\beta)=\sum_{i=1}^{m}\left[y_{i}-f\left(x_{i}, \beta\right)\right]^{2}
$$

Appendix \#1. Fitting. The Choice of Parameters.

Let we have the S function dependent on parameter β_{i} as shown on this graph

